

Tailoring Conductivity of Porous Ti<sub>4</sub>O<sub>7</sub> Magnéli Phases for **Optimized Electrode Properties** 

Giuliana Beck, Melanie Sieland, Roland Marschall, Bernd M. Smarsly Institute of Physical Chemistry, Justus–Liebig–University Giessen



- $\star$  high over potential for H<sub>2</sub> evolution
- **†** corrosion-resistance

**\*** stability against re-oxidation



Different TiO<sub>2</sub> nanomaterials were investigated.

- Anatase and rutile nanoparticles (NP)
- Manofibers (NF) by electro spinning
- ★ Monoliths (M1) by phase separation
- ★ Monoliths (M2) by polymer templating



 $p/p_0$ 

Physisorption data of the precursor materials.

5 µm

Nanostructured materials are desirable for high surface areas, but the



 $\blacktriangle$  Unit cell of Ti<sub>4</sub>O<sub>7</sub>.

Photographs of a

reduction (above)

and the obtained

Ti<sub>4</sub>O<sub>7</sub> monolith

TiO<sub>2</sub> monolith

before the

(below).

conductivity depends heavily on the morphology.

*ideal structure for optimized electrode performance* 



Due to only small differences in the composition of  $Ti_n O_{2n-1}$  (4 ≤ *n* ≤ 10), phase-pure syntheses are difficult. Parame Thus, the reduction parameters need to be controlled very carefully. 24 h 1200 °C



te

duction

Re

All suboxides are present during the reduction \*

 $\overline{\mathbf{O}}$ O D  $\mathbf{O}$ 

The morpholgy changes during the reduction. 5 µm Small structures (NP, NF, mesopores) - NP red. ---- NF red. Changes in the porosity in **b** vanish monolith 1 the NPs, NFs, and monoliths ---- calc. measurend by Hg intrusion  $\geq$ **—•—** red. Sintering porosimetry. monolith 2 ---- calc. **—•—** red. Crystallographic rearrangements 100 . 10<sup>1</sup> pore diameter / nm







structure and the reductive treatment.

1200

1000-

- monoliths exhibit the highest conductivity
- impurities reduce the conductivity heavily cm<sup>-1</sup>

composition.

| composition                                                                         | resistance |
|-------------------------------------------------------------------------------------|------------|
| Ti <sub>3</sub> O <sub>5</sub>                                                      | 930 Ω/cm   |
| Ti <sub>4</sub> O <sub>7</sub>                                                      | 10.7 Ω/cm  |
| Ti <sub>4</sub> O <sub>7</sub> + 15 % <sub>wt.</sub> Ti <sub>5</sub> O <sub>9</sub> | 22.5 Ω/cm  |
| $Ti_4O_7 + 50 \%_{wt} Ti_5O_9$                                                      | 52 Ω/cm    |

- $Ti_4O_7$  under structure depending reduction conditions. S
  - Stepwise reduction from  $TiO_2$  to  $Ti_4O_7$ 
    - Phase control via reduction time
  - Even small impurities reduce the conductance significantly
    - Phase-pure synthesis of Ti<sub>4</sub>O<sub>7</sub> is essentiell





Even though all  $Ti_nO_{2n-1}$  monoliths show much lower resistances than the  $Ti_3O_5$  monolith, the phasepure Ti<sub>4</sub>O<sub>7</sub> monolith exhibits by far the best conductivity.

**+** Precursor structure has a huge influence

Monoliths exhibit the highest conductance

The results show the importance of choosing the correct precursor as well as carefully controlling the reduction parameters for optimized electrode properties.

Physikalisch-Chemisches 

Research Group of Prof. Dr. Bernd M. Smarsly Institute of Physical Chemistry Justus-Liebig-University Giessen Heinrich–Buff–Ring 17, 35392 Giessen Giuliana.Beck@phys.chemie.uni-giessen.de

## JUSTUS-LIEBIG-

UNIVERSITÄT GIESSEN